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Abstract
We present the role of invariants in obtaining exact solutions of differential
equations. Firstly, conserved vectors of a partial differential equation (p.d.e.)
allow us to obtain reduced forms of the p.d.e. for which some of the Lie point
symmetries (in vector field form) are easily concluded and, therefore, provide
a mechanism for further reduction. Secondly, invariants of reduced forms
of a p.d.e. are obtainable from a variational principle even though the p.d.e.
itself does not admit a Lagrangian. In this latter case, the reductions carry
all the usual advantages regarding Noether symmetries and double reductions.
The examples we consider are nonlinear evolution-type equations such as the
Korteweg–deVries equation, but a detailed analysis is made on the Fisher
equation (which describes reaction–diffusion waves in biology, inter alia).
Other diffusion-type equations lend themselves well to the method we describe
(e.g., the Fitzhugh Nagumo equation, which is briefly discussed). Some aspects
of Painlevé properties are also suggested.

PACS numbers: 02.30.Jr, 02.30.Ik
Mathematics Subject Classification: 37K05, 35Q53, 35A15, 35A25

1. Introduction

The method of ‘invariants’ to analyse differential equations (d.e.s) is now commonly used; in
most cases the invariants referred to are a consequence of conserved forms of the d.e. These
provide a way of reducing the d.e. which in the case of partial d.e.s (p.d.e.s) may mean a
decrease in the number of independent variables or, as in the case of ordinary d.e.s (o.d.e.s),
refers to the order of the d.e. (e.g., see [9] or [3]). In [1, 2], the author uses the invariant idea
in conjunction with specific algorithms to anlayse equations, inter alia, the KdV, Nagumo and
Fisher equations. All of these are evolution-type equations which do not admit Lagrangians,
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which is somewhat unfortunate as the existence and knowledge of a Lagrangian makes the
task of finding invariants easier via Noether’s theorem.

Nevertheless, we show that some of these and other equations (such as Burger’s equation
which models shock wave phenomena) may still be analysed using the Lagrangian method.
Furthermore, we explore the idea that a Lie point symmetry generator of a p.d.e. associated
with a conserved vector may easily provide a Lie point symmetry of the reduced system so
that double reduction of the original p.d.e may be achieved.

We consider some and other of the examples mentioned above which arise in biology,
(Fisher’s) or in the modelling of shallow water behaviour (KdV).

We only recall some of the more salient features. Consider an rth-order system of p.d.e.s
of n independent and m dependent variables, namely,

Eβ(x, u, u(1), . . . , u(r)) = 0, β = 1, . . . , m̃. (1.1)

A conservation law of (1.1) is the equation

DiT
i = 0, (1.2)

on the solutions of (1.1). Here the total differentiation operator is

Di = ∂

∂xi
+ uα

i

∂

∂uα
+ uα

ij

∂

∂uα
j

+ · · · , i = 1, . . . , n. (1.3)

The tuple T = (T 1, . . . , T n) is called a conserved vector of (1.1).
Suppose A is the universal space of differential functions. A Lie–Bäcklund operator is

given by

X = ξ i ∂

∂xi
+ ηα ∂

∂uα
+ ζ α

i

∂

∂uα
i

+ ζ α
i1i2

∂

∂uα
i1i2

+ · · · , (1.4)

where ξ i, ηα ∈ A and the additional coefficients are

ζ α
i = Di(W

α) + ξ juα
ij ,

ζ α
i1i2

= Di1Di2(W
α) + ξ juα

ji1i2
, (1.5)

...

and Wα is the Lie characteristic function defined by

Wα = ηα − ξ juα
j . (1.6)

In this paper, we will assume that X is a Lie point operator, i.e., ξ and η are functions of x and
u and are independent of derivatives of u.

Theorem 1 [7]. Suppose that X is a Lie–Bäcklund symmetry of the system (1.1) such that the
conserved vector T = (T 1, . . . , T n) is invariant under X. Then

X(T i) + T iDj (ξ
j ) − T jDj (ξ

i) = 0, i = 1, . . . , n. (1.7)

Definition. When (1.7) is satisfied, we say that X is associated with T.

Whilst the notion of association of symmetries and conservation laws and its application
in the reduction of o.d.e.s is known, for p.d.e.s, the concept is relatively new. Moreover, its
application in the reduction of the p.d.e. is demonstrated here (section 2) for the first time.

A conservation law (1.2) provides a potential system corresponding to (1.1) with the
introduction of a potential variable (dependent) v, namely, for two independent variables
x1 = t and x2 = x, the potential system is

vx = T 1, vt = −T 2. (1.8)
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2. Symmetries, invariants and double reduction

We present here a range of examples that show that the association of a symmetry X of a
system with a conserved vector T provides a ‘reduction’ of the system which, in turn, has a
symmetry being an extension of X (Xv) to include the potential variable. Indeed, Xv can be
used to reduce the already reduced system. In the next section, we look at a ‘Lagrangian’
picture of the reduced forms of the equations even though the equation concerned may be of
evolution type.

Example 1: Burger’s equation

We consider the double reduction of the well-known equation

ut = uxx + uux. (2.1)

(a) The symmetry generator corresponding to ‘boost’, namely, X = t ∂
∂x

− ∂
∂u

, is associated
with T 1 = u + x/t , T 2 = −ux − 1

2u2 + x2/(2t2) in the sense of the theorem and definition
above (done in [7]) and it can be shown that Xv = X + k ∂

∂v
(k is a constant) is a symmetry of

the corresponding potential (and reduced) system

vx = u + x/t, vt = ux + 1
2u2 − x2/(2t2). (2.2)

With k = 1, invariants of Xv are y = t, α = u + x/t and β = v − x/t (α(y) and β(y) so that
ux = −1/t, vx = 1/t, ut = α′ + x/t2 and vt = β ′ − x/t2. The u solution of (2.2), then, is
u = (1 − x)/t .

This solution may be achieved, without much of a difference in the calculations, in the
direct reduction of (2.1). However, from what follows below, the usefulness of the ‘double
reduction’ for (2.1) is clear from the invariant solution of (2.1) obtained form the dilation
symmetry G = 2t ∂

∂t
+ x ∂

∂x
− u ∂

∂u
.

(b) It can be shown that Gv = G above is a Lie point symmetry generator of the system

vx = u + 2x/t, vt = ux + 1
2u2 − x2/(t2) (2.3)

obtained by noting that G is associated with the conserved vector
(
u + 2x/t,−ux − 1

2u2 +
x2/t2

)
. Thus, a reduction of (2.3) is achieved by the invariants of Gv , namely, y = x2/t, α =

ux and β = v. The system then becomes

2yβ ′ = α + 2y, −yβ ′ = 2α′ − α/y + 1
2α2

/
y. (2.4)

We, thus, get the first-order o.d.e

2α′ +
y − 2

2y
α = −1

2

α2

y
(2.5)

which gives a solution

α(y) = 2
√

y e−y/4

2k +
√

πErf (
√

y/2)
(2.6)

so that the G invariant solution (self-similar) is obtainable from u = xα
(

x2

t

)
.

If one does not appeal to the association with conservation laws described here, this G
invariant solution would require the usual reduction that is described in the note below in
which the corresponding second-order o.d.e cannot be analytically solved by any standard
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method. Also, one may resort to a transformation to the heat equation via the Hopf–Cole
transformation. Our method for obtaining this solution avoids both these intricacies.

Notes
(1) A direct reduction of Burger’s equation using G would yield the nonlinear second-order
o.d.e

y2(4w′′ + w′) + 2yw′(w − 1) + 2w(1 − w) = 0,

where w = w(y) (y = x2/t and w = xu).
(2) The well-known travelling wave solution of (2.2) is obtainable from the generators ∂/∂t

and ∂/∂x by letting y = x − ct (c is the wave speed) and w = u (w = w(y)). With this
choice of variables, Burger’s equation becomes the second-order o.d.e

w′′ + ww′ + cw′ = 0

and one integration yields

w′ + 1
2w2 − cw = k, (2.7)

where k is a constant. Alternatively, we show that the first-order o.d.e. (2.7) is directly
obtainable using the association property above. The generator Y v = c∂/∂x + ∂/∂t + ∂/∂v is
a Lie point symmetry of the potential system

vx = u, vt = ux + 1
2u2 (2.8)

(c∂/∂x + ∂/∂t is associated with the conserved vector (u,−ux − 1
2u2)). The invariants of Gv ,

namely, y = x − ct, α = u and β = v − t reduce (2.8) to the system

β ′ = α, (2.9a)

α′ + 1
2α2 + cα = 1. (2.9b)

Compare (2.7) with (2.9b).

Example 2: Korteweg–deVries equation

A model of shallow behaviour is given by the well-known equation

ut = uux + uxxx. (2.10)

A conserved vector is
(
u,−uxx − 1

2u2
)

(associated with the symmetry generator G =
c∂/∂x + ∂/∂t (c is the wave speed) so that a potential form of (2.10) is

vx = u, vt = uxx + 1
2u2 (2.11)

with a symmetry generator Gv = c∂/∂x + ∂/∂t + ∂/∂v which reduces (2.11) to

α = β ′, (2.12a)

α′′ + 1
2α2 + cα − 1 = 0 (2.12b)

(y = x − ct, α = u and β = v − t). Again, (2.12b) is a direct reduction of (2.10) using
G plus one integration. The solution of these is discussed in [9] but we look at a possible
‘Lagrangian’ picture in the next section.

We can make a similar analysis of (2.10) corresponding to the Galilean plus time invariant
generator X = t∂/∂x + a∂/∂t + ∂/∂u (a is a nonzero constant). Here, of course, one will need
to calculate the associated conservation law.

Recently [5], the above method has been successfully applied to the analysis of ‘couette’
flows that arise in fluid dynamics.
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3. Lagrangians of reduced forms and double reductions

We now consider ‘variational principles’ for some p.d.e.s even though the p.d.e. itself does
not admit a Lagrangian.

Illustrative example

In example 2, a reduction by G of the KdV equation yields the travelling wave solution by
letting y = x − ct and w = u, i.e.,

w′′′ + ww′ = −cw′

which with one integration becomes

w′′ + cw + 1
2w2 = 0 (3.1)

(compare this with (2.12b) obtained using the symmetry/conservation law relationship). A
discussion of the solution to (3.1) is given in [9]. It is interesting to note that even though
the KdV equation is not derivable from a variational principle, a mathematical analysis of
its reduced form, namely, (3.1) may appeal to a variational method as a Lagrangian of (3.1)
is L = 1

2w′2 − 1
2cw2 − 1

6w3. Indeed, one has now the advantage of calculating Noether
symmetries corresponding to L (and corresponding first integrals) to twice reduce (3.1).

Similarly, a reduction of the KdV equation for solutions invariant under X is dicussed in
[9]. That is, if y = x − 1

2bt2 (b = 1/a) and w = u − bt , we get a third-order o.d.e which
after one integration leads to a first Painlevé transcendent

w′′ + 1
2w2 + by + k = 0. (3.2)

A Lagrangian for (3.2) is L∗ = 1
2w′2 − 1

6w3 − 1
2bw2 + kw. The second Painlevé transcendent

corresponding to the KdV equation occurs by considering a scale-invariant reduction (see [9]).
This procedure has not been carried out previously and can be useful in the analysis of

a large class of other nonlinear evolution-type equations such as the combined KdV-modified
KdV equation

ut + α(1 + βu)uux + γ uxxx = 0, α, γ > 0, (3.3)

which has recently attracted much attention. It can be shown that a similarity reduction leads
to the second-order o.d.e.

γw′′ − 1
3yw + 1

3αβw3 = 0 (3.4)

which has Lagrangian (for γ = 1) L = 1
2w′2 + 1

6yw2 − 1
12αβw4. Surprisingly, (3.4) is also a

second Painlevé transcendent.
A complete analysis of the Fisher equation in the manner described above is done below.

The Fisher equation

We consider, in detail, the Fisher equation

ut = uxx + λu(1 − u) (3.5)

which only admits point symmetries involving time and space translations. Also, (3.5) does
not admit a Lagrangian.

A time translation reduction of the equation becomes the o.d.e. (y = x,w = u)

w′′ + λw(1 − w) = 0
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and a translation in x reduction yields (y = t, w = u)

w′ = λw(1 − w).

A travelling wave reduction (y = x−ct and w = u) from a combination of these Lie symmetry
generators yields

w′′ + cw′ + λw(1 − w) = 0. (3.6)

Equation (3.6) has a Painlevé property for λ = ±6c2/25 (see [2]). We attempt an analysis and
reduction of (3.5) using the notion of invariants in the way described above. Firstly, we note
that a Lagrangian of (3.6) is

L = ecy
[

1
2w′2 − λ

(
1
2w2 − 1

3w3
)]

. (3.7)

The Noether symmetries G = ξ∂/∂y + η∂/∂w, if any, are given by solving

GL + L
dξ

dy
= df

dy
,

where f = f (y,w) is some gauge term. Noether’s theorem then provides a conserved
quantity, I = I (y,w,w′), corresponding to each Noether symmetry G and gauge f . It is
known that the first-order equation I = k (k is a constant) which is a reduced form of (3.6)
is also invariant under G which allows us to reduce once more with the symmetry G and,
hence, to find a solution to (3.6) by quadrature being an exact solution of the Fisher equation.
The calculations show that a Noether symmetry is G = ecy/5{∂/∂y + 2c/5(1 − w)∂/∂w}
(f = (2/5)2 e6cy/5w(2 − w)) coming from λ = −6c2/25 which corresponds to the Painlevé
property mentioned above. The corresponding first-order o.d.e. with G as Lie symmetry
generator is

e6cy/5
{− 1

2w′2 − 2c2/25w(1 − w)2 + 2c/5w′(1 − w)
} = k. (3.8)

Equation (3.8) can be mapped to an equation in Y and W , Ī (W,W ′) = k̄ (a variables separable
equation), i.e., with Lie symmetry Ḡ = ∂/∂Y by solving the system of p.d.e.s G(Y) = 1
and G(W) = 0. We get W = (1 − w) e2cy/5 and Y = (−5/c) e−cy/5. After some lengthy
calculations, (3.8) has the transformed form

dW
√

(2c/5)2W 3 + 2k
= −dY. (3.9)

The integral with respect to W is obtainable in terms of some special functions and substituting
back for W,Y and w, y gives a nontrivial travelling wave solution for the Fisher equation. The
better known analyses done on the Fisher equation or its reduced form are numerical (e.g., see
[10, 11])—the above is completely analytical.

Note
Equation (3.6) generates the two-dimensional Lie algebra of point symmetries G1 = ∂/∂y

and G (above), the latter for λ = −6c2/25 with the Lie bracket [G,G1] = (−c/5)G. Thus, a
solution by quadratures is obtainable, without recourse to Lagrangians, by reducing (3.6) first
by G and then by G1 (see [6]).

We now discuss a straight analysis of (3.5) by finding conserved vectors (T , S) on the
general diffusion equation

ut = uxx + F(u). (3.10)

If such a vector exists, (3.10) and, in particular, the Fisher equation may be analysed with
possible potential symmetries (see [3]) or we would be able to study the p.d.e. in the manner
described in section 2. A conserved form of (2.9a) is

DtT + DxS = 0|(3.10). (3.11)
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After expansion into partial derivatives, the tedious calculations reveal

T = kux + a(x, t)u + b(x, t), S = −kut − auxaxu + d(x, t) (3.12)

subject to bt + dx = 0 and atu + F(u)a + uaxx = 0. It is clear that (T , S) is a nontrivial
conserved vector if F = 0 (heat equation) or F = u (in which case we do not obtain the
Fisher equation and a satisfies at + axx + a = 0). We conclude that the Fisher equation has
no conservation laws (this implies that the analysis utilizing potential symmetries presented
in section 2 cannot be done on the Fisher equation).

The Fitzhugh–Nagumo equation

We carry out a similar study of a generalized version of the Fitzhugh–Nagumo equation

ut = uxx + λu(1 − u)(u − a), a �= 1. (3.13)

The calculations, as before, are long and tedious but we briefly present the results. A Painlevé
analysis has been done on (3.13) for λ = 1 in [4]. A travelling wave reduction y = x − ct and
w = u yields the o.d.e.

w′′ + cw′ + λw(1 − w)(w − a). (3.14)

A Lagrangian of (3.14) is L = ecy
[

1
2w′2 − λ

(− 1
4w4 − a

2 w2 + a+1
3 w3

)]
which has a single

Noether symmetry G = ecy/3
[
∂/∂y + c/3

(
a+1

3 − w
)
∂
/
∂w

]
for simultaneous forms of λ given

by

λ = 2c2

3(a2 − a + 1)
, λ = 4c2

9a
(3.15)

from which we obtain a = 1/2 and a = 2 (λ = 2 4c2

9 and λ = (1/2) 4c2

9 , respectively).
Following from results regarding the Fisher equation, we propose that the equation (3.13)
possesses Painlevé properties for these combinations of a and λ. Furthermore, the exact
solutions for the equation are obtainable from a double reduction using the single point
symmetry generator G.

The method enables one to analyse a large class of diffusion-type equations

ut = uxx + λF(u), (3.16)

which admit no Lagrangian but whose reduced form has a Lagrangian, in a variational way.
We note that a travelling wave reduction always exists. Also, as a corollary, some new and
useful Painlevé properties are obtainable.

4. Conclusion

We have presented the role of invariants in obtaining exact solutions of differential equations.
Firstly, conserved vectors of a p.d.e. allow us to obtain reduced forms of the p.d.e. for which
some of the Lie point symmetries are easily concluded. Secondly, invariants of reduced forms
of a p.d.e. are obtainable from a variational principle even though the p.d.e. itself does not
admit a Lagrangian. These reductions carry all the usual advantages regarding symmetries and
further reductions as was seen in detail regarding the Fisher equation. The technicalities of
‘symmetries of the manifold’ and symmetries of a differential equation have only recently been
a subject of study (see [8]). The analysis here emphasizes the existence of such a relationship
implying that the Lagrangian/Hamiltonian structure in the reduced form of the evolution
equation is not coincidental or merely a mathematical convenience but has an explanation in
the structure of the underlying manifold or submanifold.



4636 A H Kara and C M Khalique

The method can be applied to a large class of evolution-type p.d.e.s, particularly diffusion-
type equations. The method is a novel one and provides new solutions in some cases and
proposes an alternative way of obtaining values of parameters for which certain classes of
equations may possess Painlevé properties.
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